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The one-dimensional  problem of the propagation of sound in a two-component mixture is solved. An expression 
is obtained for the speed of sound under conditions of chemical  equilibrium. The results for the dissociation of 
hydrogen are compared with similar results in [1]. 

In problems of gas dynamics the velocity of sound is usually calculated from the formula c ----- } Z ~ ,  where 
7 = Cp/C v is the ratio of the specific heat capacities at a given temperature. However, if sound travels in a mixture of 

gases, this formula will be valid only for a nonreacting mixture. When the composition of the mixture changes as a 
consequence of chemical  reaction, and the specific heat capacities do not remain constant, the coefficient 7 will have 
some other significance. 

An expression for the speed of sound is derived below directly from the solution of the equations describing the pro- 
pagation of small perturbations in a reacting medium.  The mixture is assumed to be a two-component one. Its state is 
characterized by the temperature T, the mass density of the mixture p = Pl + P2, and the mass concentrations C 1 = 

= Pl/P, C2 = Pz/P; since C 1 + C 2 = 1, then one of the concentrations, C1, for example, will be independent in the 
�9 chemical  reaction process; we shall denote it by C. Assuming that the flow is one-dimensional  and employing, as usual 

in the theory of sound, the adiabatic approximation, i . e . ,  neglecting viscosity, diffusion and thermal conduction, we 
write the equations characterizing the behavior of the mixture. 

The continuity equation for a particular component in the presence of a chemical  reaction will be 

OC OC 
Ot ~ - v  Ox - -  m .  (1) 

Here v is the mean flow velocity of the mixture, and m is the mass rate of the chemical  reaction, which depends on 
concentration and temperature.  In the case in question, in the presence of a reversible stoichiometric equilibrium reac-  

tion [2], we can write: 

( _ c p '  1 - c  �9 , ,  

where M is the mass of a molecule of the first component,  v i and v{ are stoichiometric numbers, Pl and ~2 are the mole-  

cular weights of the components, and k]  and k b are the rate constants of the forward and reverse reactions, depending 

exponentially on activation energy (Arrhenius' hypothesis): 

k! = k  exp - -  E k b = k exp - -  (E -b r) (3) 
~ '  R T  " 

It is assumed that the excitat ion times of the forward and reverse reactions are the same, and therefore the steric 

factor k is the same for kf and k b. We note at once that m = 0 will be the condition of chemical  equilibrium. 

The continuity equation and the momentum equation for the mixture have the form 

Op- 0 " Ov Ov Op 
0---F + ~ pv - -  0, p ~/- -4 pv  ~ -  --- 02 (4) 

The condition of conservation of energy in the presence of a chemical  reaction has the form 

pcp + v ~-~ = ~/-  -~- - -  pmQ (cp = C c p ,  -t- (l - -  C) cp,) , (5) 

where Cp is the specific heat capacity of the mixture, and p is the pressure, equal to the sum of the partial pressures. 
For the quantity of heat Q in Eq. (5) we have 

T 

Q=r + f (Cp,--c )dr.  
0 

Here r is the specific heat of reaction and the second term is conditioned by the temperature dependence of the heat 

capacities.  

Finally,  in order to close the system, it is necessary to add the equation of state of the mixture, obtained by summa-  

t ion of the equations of state for the individual components (R is the gas constant of the mixture): 
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p = pRr (R = CR~ + (i -- c)  P~J.  U~) 

We l inear ize  the system of equations (1), (4)-(6) in the fol lowing manner .  We represent a l l  the parameters  of the 
mix ture  in the form of a sum of the  undisturbed part - denoted by the subscript 0 - and the perturbation - denoted by 

a pr ime.  The undisturbed parameters  re la te  to the state of c h e m i c a l  equ i l ib r ium,  so that the condi t ion  m = 0 is fu l f i l l ed ,  

while the  fol lowing l imi ta t ions  are imposed on the perturbations:  their  squares and products may  be neg l ec t ed ,  per turba-  

tions of dependent  quanti t ies  are obtained as the l inear  part of the expenaion  of these quanti t ies  at the point of c h e m i c a l  
equ i l ib r ium:  

C : Co + C', Om Om am 
P : P0 -t- P', m = b - c T C ' + - ~ o p ' + o ~ T T ' = m "  e tc .  (7) 

If only the speed of sound is to be de te rmined ,  and not the ent i re  m e c h a n i s m  of sound wave  propagat ion,  then the 

undisturbed mixture  may  be assumed to be at rest, v0 =0 and v '  = v. 

Substi tuting (7) in the system of equations (1), (4)-(5),  and discarding terms conta in ing  only undisturbed quant i t ies ,  

since they satisfy these equat ions ,  we obtain for the perturbations the  system of l inear  d i f fe ren t ia l  equat ions 

Op' Or' 
c3t -~-Po-~-x = 0 '  

OT" Op" 
P~ Ot - -  Ot 

the  solution of which is sought in  the form:  

P '  = ~ ~" ^ i  ( a x - - 2 r w t )  ~0%pv 

Or" Op" : OC" 
po--~E + -~-x = 0, a - T ' = - - m '  

, Op p' Op Op . 
- -  poQom', t) = -~o -]- O-T-o T"@ -~o C 

C.r = C0~c ei (ax--2~.vt) (a = 2g / s + in) e t c .  , 

(8) 

(9) 

where X is the wave leng th ,  x is the  absorption coef f i c i en t  , v is the f requency,  ~ p ,  gc ,  e t c . ,  denote  dimensionless  

wave  ampl i tudes ;  and P0, Co, e tc .  , are associated with the  condi t ion  m = O. 

For the rate of propagat ion of the perturbations we have ,  f rom the known formula ,  

2g*v o) 
__ ((o =2a:v). (i0) 

c : s  R e  a - -  R e  a 

Substi tut ing (9) in (8), we obtain a homogeneous  system of l inear  a lgebra ic  equat ions  for the ampl i tudes  ~ O, ~ c '  

e t c .  Its solution wil l  be nontr iv ia l  i f  the de te rminan t  of its coef f ic ien ts  is zero .  From this condi t ion ,  after expansion of 

the de te rminan t ,  we find the  re la t ion  be tween  a and the  f requency  w: 

Op 
o-9- p ( i l )  

op--~ icp~176 + i gO- % + Q OT Op - -  + R---T o-6- o 

(% - -  cpo - -  It). 

By separat ing the real  part of Eq. (11), we can  find from (10) the  speed of sound c as a funct ion of co. The  formulas  

for c w i l l  be s imples t  in two l i m i t i n g  cases: 1) The  system follows the  osc i l la t ions  of  the wave  wi thout  iner t ia ,  so that  
c h e m i c a l  equ i l ib r ium is established a l l  the t i m e ,  and, 2) the system can  not keep  up wi th  changes  in ttae wave.  in  

the first case the re laxa t ion  t i m e  T is sma l l  compared  with t o - i  It was shown in [2] that  for a mix tu re  of gashes r e a c t -  

ing s t o i c h i o m e t r i c a l l y  the re la t ion  be tween  the re laxa t ion  t i m e  and the de r iva t i ve  of the  reac t ion  rate with respect  to 

concen t ra t ion  is r = ( 0 m / a C )  -1. 

Then the condi t ion  r < co-1 impl ies  that  w < 0m/@C. It  can  be shown that  in this case co wil l  also be smal l  c o m -  

pared with @m/~p and @m/~T.  Expanding with respect  to the  sma l l  pa ramete r  ~ (~m/OC)  -1 t he  expression for a from 

(11), we obtain,  by conf in ing ourselves to f i rs t -order  te rms,  for the  speed of sound at smal l  values  of w: 

Om Om Q Ora cp Op Om 
Op a-C- cp 4-Q ~ - - p  T Op - -  B T  OC 0p (12) 

c~ Op Ore. Om i am Op 0" 
o c  % + q-Es  + p or pc 

In the second l i m i t i n g  case  the system can be considered " f rozen"  at c = co,  p = P0 and T = T o . In this case,  

r > co-i and co > ~m/OC, and expansion with  respect  to the sma l l  pa rame te r  co-i and to > 0 m / a C  for the speed of sound, 

denoted in this case  by c ~ gives 

c~0, Op (13)  
Cex~2 - -  Cv, Opo " 

The rea l  va lue  of the speed of sound, ca l cu l a t ed  from (11) for a c o m p l e t e l y  def ined w, l ies be tween  the values  co 

a n d  c ~ .  It can be seen f rom the  resuks just g iven  that  the  fo rmula  c = ]/~p/p, in which Cp and Cv are t aken  for P0 
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and To is suitable for ca lcu la t ing  the speed of sound in the mix ture  only if it is in the "frozen" state,  when its c o m -  

position remains unchanged,  l l ence ,  the rate of transmission of very high frcqHcJlcy waves is almost unaffected by the 

presence of a reac t ion  in the gas mixture .  Formula  (12) is also suitable for ca lcu la t ing  rile ve loc i ty  of long waves; for 

this ca lcu la t ion  it is necessary to know from the c h e m i c a l  kinet ics  the actual  relat ion between the react ion rate m and 

C, p, and T. 

We shall  apply the result obtained to a dissociat ion react ion of the type X z ,~ gX - r, where r ( taken with the minus 

sign) denotes the heat absorbed in the process of dissociation of unit mass of gas, i. c . ,  this is nothing other  than the heat  

of format ion of X from the elcn]cnts  of X2 olq the assumption that the heat of formation of X 2 is equal  to zero.  Using ex -  

pressions (2) and (,3), written for dissociat ion,  we obtain for the der ivat ives  at tile cqt t i l ibr ium point:  

am 
Ot 'o 

Sub~i tu t ion  in Eq. (12) gives 

Jllrb l - -  Co 2 am Mkb 
~t~z Po Co ' 0p0 = - -  p ~ 2  

Om M kb r 
07' - -  ~ "  p 0 ~ ( t - - C ~ ) ) ~ .  

(1 - -  Co) u ( 1 4 )  

p ( 2 rQ TQ___) ( 1 4 - 6  rQ r ) - '  ~ 
c ~  - c~ , ( t - -C)  C ( 2 - - C ) + R T  =gq- c v ( t - - C )  C - k  R T  2 - T ~  " (15) 

Introducing tile true isentropic exponent  for dissociat ion 71) = c~p0/P0, where c~ is ca lcu la ted  from formula (15), 

we see that it does not co inc ide  with the rat io Cp/C v . 

Using formula (15) to ca l cu l a t e  the dissociat ion of hydrogen ( c h e m i c a l  kinetics data taken from the handbook [3]), 

we obtain,  for e x a m p l e ,  for 

T = 3 0 0 0 ~  p = 0 . 0 1 0  abs a t m ,  T D = I . t 2 3 ,  c v / % =  1.264; 

T = 3000 ~ K, p = 0.500 abs atm , TD = 1.t20, c~ / % = 1.206 ; 

T = 2200 ~ K, p = 0.0t0 abs a t m ,  "rD = 1.123, Cp / % = 1.164 . 

For these same values of t empera tu re  and pressure, the corresponding values of TD and Cp/C v obtained in [1] (by 

means of a purely t he rmodynamic  ca lcu la t ion)  are,  r e spec t ive ly :  

"rn ~--- t .1 t7 ,  t.122, t .1 t7 ,  c p / c  v =- 1.260, t . t80,  t . t62  . 

The ag reemen t  may  be considered sat isfactory.  
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